Soil CO2 production in upland tundra where permafrost is thawing

نویسندگان

  • Hanna Lee
  • Edward A. G. Schuur
  • Jason G. Vogel
چکیده

[1] Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2 measurements to understand the response of belowground C emissions for different soil depths from upland tundra as a result of permafrost thaw and thermokarst development. We established sites in central Alaska, where permafrost thaw and thermokarst development had been monitored for the past 2 decades. Cumulative growing season CO2 production averaged for 3 years (2005–2007) ranged from 177 to 270 g CO2-C m 2 and was lowest in the least disturbed moist acidic tundra and highest where thawing of permafrost and thermokarst was most pronounced. We were able to explain 55% of variability in growing season soil CO2 production using surface subsidence, soil temperature, and site differences. This was likely a direct effect of permafrost thaw and thermokarst development and an indirect effect of changes in microsite soil temperature and surface moisture content, which stimulated soil organic matter decomposition and root respiration. We also observed unusually high CO2 concentrations in the early growing season, which may be attributable to trapped CO2 within air pockets in the frozen soil. Taken together, these results supported the projection that permafrost thaw and thermokarst development will increase belowground carbon emissions in the upland tundra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of upland thermokarst features with high resolution remote sensing

Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst ...

متن کامل

A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations.

Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4 ) a...

متن کامل

Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

[1] Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple ...

متن کامل

The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate

Recent observations suggest that permafrost thaw may create two completely different soil environments: aerobic in relatively well-drained uplands and anaerobic in poorly drained wetlands. The soil oxygen availability will dictate the rate of permafrost carbon release as carbon dioxide (CO2) and as methane (CH4), and the overall effects of these emitted greenhouse gases on climate. The objectiv...

متن کامل

Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

Microbial decomposition of soil organic carbon (SOC) in thawing Arctic permafrost is important in determining greenhouse gas feedbacks of tundra ecosystems to climate. However, the changes in microbial community structure during SOC decomposition are poorly known. Here we examine these changes using frozen soils from Barrow, Alaska, USA, in anoxic microcosm incubation at -2 and 8°C for 122 days...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010